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ABSTRACT  

Traditional greenhouse management often suffers from slow responsiveness and limited adaptability due to 

its reliance on manual operations. This study proposes a greenhouse environment monitoring and control 

system that integrates Internet of Things (IoT) technologies with a fuzzy PID controller optimized through an 

Adaptive Particle Swarm Optimization (APSO) algorithm. A real-time monitoring platform was developed based 

on a WebSocket-enabled front-end/back-end separation architecture. Environmental parameters, such as 

temperature and humidity, were collected by sensors and transmitted in real time to the platform via the MQTT 

protocol, enabling data visualization and anomaly detection. The APSO algorithm was employed offline to 

optimize the fuzzy PID parameters, and the resulting controller was implemented on a microcontroller to 

achieve real-time control. Compared with conventional PID control, the APSO-optimized controller reduced 

overshoot by 72.1% and shortened the settling time by 20%. Experimental results demonstrated that the 

system was less susceptible to external environmental disturbances, maintaining temperature fluctuations 

within 0.3°C. This study provides a robust and effective solution for smart greenhouse management.  

 

摘要  

由于依赖人工操作，传统的温室管理往往存在响应速度慢、适应性有限等问题。本研究提出了一种温室环境监

测和控制系统，该系统将物联网（Internet of Things, IoT）技术与通过自适应粒子群优化（Adaptive Particle 

Swarm Optimization, APSO）算法优化的模糊 PID 控制器相结合。提出基于 WebSocket 的前端/后端分离架

构，开发了一个实时监控平台。温度和湿度环境参数由传感器收集，并通过 MQTT 协议实时传输到平台，从

而实现数据可视化和异常检测。采用 APSO 算法离线优化模糊 PID 参数，并在微控制器上实现控制器的实时

控制。与传统的 PID 控制相比，APSO 优化控制器将过冲降低了 72.1%，并将稳定时间缩短了 20%。实验结

果表明，该系统不易受外部环境干扰的影响，能将温度波动保持在 0.3°C 以内。本研究为智能温室管理提供了

一个稳健有效的解决方案。 

 

INTRODUCTION 

In recent years, advancements in agricultural production technologies have become increasingly critical 

due to the continuous growth of the global population and the rising demand for food. Predictions indicate that 

by 2050, the global population will reach approximately 8.52 billion, reflecting a 10.6% increase from 7.7 billion 

in 2020 (Akaev, 2022). Correspondingly, global food demand is expected to rise by nearly 60% (van Dijk et al., 

2021). However, the agricultural sector faces escalating challenges, including limited arable land, water 

scarcity, and environmental concerns.  
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A significant portion the world's freshwater resources is used for agricultural irrigation, while a large 

proportion of greenhouse gas emissions can be attributed to the global food production system (Hemathilake 

and Gunathilake, 2022, Khondoker et al., 2023). In addition, climate change has led to an increased frequency 

of extreme weather events, further complicating agricultural production and heightening its unpredictability 

(Kumar et al., 2022). Therefore, improving agricultural efficiency and sustainability has become imperative. 

Smart agriculture, which integrates information technology, automated control, and agricultural science, 

has emerged as a promising solution to these challenges (Goli et al., 2024). Among its various applications, 

greenhouse cultivation plays a pivotal role in enhancing crop yield and quality by providing controlled 

environmental conditions (Atia and El-madany, 2017). Globally, over 470,000 hectares of land worldwide are 

dedicated to greenhouse cultivation, yielding approximately ten times more per unit area compared to open-

field cultivation (Zhou et al., 2021). Many crops grown in greenhouses (e.g. tomatoes, strawberries, etc.) 

require stable temperature and humidity levels to promote optimal flowering, fruit set and ripening. 

Temperature deviations can adversely affect fruit quality and yield, while high humidity may increase the risk 

of fungal diseases. Therefore, precise microclimate control is essential for successful crop cultivation. However, 

traditional greenhouse control systems often struggle to maintain precise environmental regulation due to 

fluctuating external conditions and complex parameter interactions. Many conventional approaches lack the 

responsiveness and precision required for modern agricultural standards (Katzin et al., 2022). In particular, 

traditional control methods face challenges such as response delays and insufficient adjustment precision in 

regulating key environmental parameters like temperature and humidity concentration, making it difficult to 

meet the high standards of modern agriculture. 

The concept of the Internet of Things (IoT) can be traced back to the 1990s (Chin et al., 2019, Schoder, 

2018). With advancements in technology and the expansion of its applications, IoT holds the potential to 

revolutionize various fields, including supply chain management, logistics tracking, intelligent transportation, 

and environmental monitoring (Fadhel et al., 2024). In agriculture, IoT has emerged as a key emerging 

technology driving agricultural development, with widespread applications in cultivation, livestock farming, and 

agricultural product traceability, playing a crucial role in promoting agricultural advancement (Gatkal et al., 

2024, Mohamed et al., 2022, Omasa et al., 2022). Wang et al. (2018) developed an IoT-based intelligent 

greenhouse control system that can effectively monitor the greenhouse environment. However, the cloud 

platform lacks analysis and algorithm control and cannot achieve accurate environmental control.  

Fuzzy logic control, with its advantages in handling nonlinear and uncertain systems, has become an 

effective method for greenhouse environment control. Unlike traditional control methods, fuzzy logic control 

does not require precise mathematical models and can achieve flexible control of complex systems through 

fuzzy rules and fuzzy inference, making it particularly suitable for the multi-variable and highly coupled 

environment of greenhouses (Cheng, 2020, Wang and Zhang, 2018, Thomopoulos et al., 2024). Marco A. 

Márquez-Vera et al. (2016) developed an internal temperature control system for greenhouses based on an 

inverse fuzzy model. The fuzzy partitions for each climate variable used two membership functions, which 

enhanced the model's accuracy and response speed. The model was tuned using batch least squares and 

updated with recursive least squares to optimize control performance. Adaptive Particle Swarm Optimization 

(APSO) is an improved algorithm that introduces an adaptive mechanism to the traditional Particle Swarm 

Optimization (PSO) algorithm (Zhang et al., 2014). Different from the standard PSO algorithm, APSO 

dynamically adjusts the key parameters of the algorithm and automatically optimizes them based on feedback 

information during the search process. This improves the global search capability and helps avoid convergence 

to local optima. Through this adaptive mechanism, APSO can better balance global exploration and local 

exploitation, and enhance the convergence and search efficiency of the algorithm, which is especially suitable 

for complex, multi-peaked, nonlinear, and high-dimensional optimization problems (Zheng et al., 2023).  

Based on the aforementioned background, this paper develops and tests a small greenhouse control 

system that integrates fuzzy PID control optimized by an APSO algorithm and an intelligent monitoring platform. 

The system design includes data collection from a network of sensors, parameter adjustment via a fuzzy 

controller, and seamless integration with the intelligent monitoring platform. The overall cost of the system is 

lower compared to traditional greenhouse methods, which not only improves the accuracy of environmental 

regulation, but also provides significant economic benefits. It can accurately control greenhouse temperature, 

reducing energy consumption, and the use of sensors and low-maintenance communication equipment helps 

to lower design costs. Furthermore, the intelligent monitoring platform minimizes manual intervention, 

improving management efficiency and reducing labour costs. 
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MATERIALS AND METHODS 

Hardware equipment 

In a small-scale greenhouse control system for smart agriculture, sensors are critical components for 

achieving real-time monitoring and control of environmental parameters (Lee et al., 2019). The system 

described in this paper utilizes a variety of devices to monitor key environmental data in the greenhouse, as 

shown in Table 1. The soil sensor (Model: VMS-3001-TR-*) and air sensor (Model: VMS-3002-WS) were 

sourced from VEMSEE flagship store (Address: Hangzhou, Zhejiang Province, China). The 8-channel RS485 

hub supports multi-channel input and can connect up to 8 RS485 signal inputs, thereby enabling centralized 

management of data from multiple sensor devices. The system gateway was obtained from the PUSER 

flagship store. Its main function is to receive RS485 signals from the hub, convert them into JSON format, and 

then transmit the converted JSON data to the control system using the MQTT protocol. 

In terms of actuators, the system is equipped with PTC heaters and semiconductor coolers to adjust the 

temperature. To optimize the circulation of cold and warm air, the heater is installed in the lower part of the 

greenhouse, while the cooler is installed in the upper part. In addition, ventilation fans are included to provide 

effective air circulation. To control the air humidity in the greenhouse, the system is equipped with an ultrasonic 

humidifier, supplemented by fans to enhance the humidification effect. The fan installed next to the humidifier 

helps to evenly distribute the misted moisture throughout the greenhouse, ensuring uniform humidity. 

 

Table 1  

Hardware Equipment 

Equipment Models Producers 

soil sensor VMS-3001-TR-* VEMSEE Flagship Store 

air sensor VMS-3002-WS VEMSEE Flagship Store 

hub HM-RS485-16-JX eMybos 

gateway USR-M100 PUSER Flagship Store 

heater DJR Kunli Electric 

cooler 12V Semiconductor Chiller ZeJie 

humidifier SHILU-12568 ShiLu 

fan 15050-17251 SanXie 

 

Greenhouse structure 

The greenhouse frame is shown in Figure 1. It is constructed from 3-mm thick acrylic panels, providing 

good light transmission for plant growth. The greenhouse was designed in a square shape with a length of 800 

mm, a width of 600 mm and a height of 700 mm. Ventilation openings with a diameter of 150 mm are provided 

on both sides to facilitate air circulation. The top of the greenhouse is provided with three square holes 47 mm 

long to hold the cooler and the bottom is provided with mounting holes 5 mm in diameter for the heater. To 

further ensure temperature stability, an insulating film was added to the exterior of the greenhouse to improve 

thermal efficiency and minimize heat loss. 

 

 
Fig. 1 - Greenhouse frame 
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System architecture 

The overall conceptual diagram of the proposed system is shown in Figure 2. The system architecture 

consists of three main components: an environmental monitoring system, a control system and a data 

visualization platform. The primary function of the environmental monitoring system is to collect, transmit and 

initially process environmental data. The system comprises six RS485 sensor nodes and one edge gateway. 

Each sensor is connected to the hub via an RS485 interface and communicates with the edge gateway 

through a serial port. The edge gateway is responsible for receiving environmental data from the hub 

performing initial processing and converting the data format. First, it receives sensor data such as temperature 

and humidity from the hub via a pre-configured interface, encapsulates the data into JSON format, and sends 

the JSON data to the specified MQTT topic via the MQTT protocol. The system utilizes the ESP8266 Wi-Fi 

module to connect to the MQTT server and subscribe to the topic to receive the environmental data. The 

received JSON data is transferred through serial communication to STM32F103ZET6 microcontroller, which 

is responsible for processing and analysing the received data. It compares the real-time data with the pre-set 

parameters to determine if the environmental conditions are within the expected range. Based on the 

comparison results, the control system adjusts the duty cycle of the PWM (pulse width modulation) signal to 

fine-tune the system's response. By modulating the PWM signal, the switching state of the electromagnetic 

relay is controlled, which in turn regulates actuators such as fans, heaters, coolers, etc., ensuring real-time 

monitoring and fine-tuning of environmental parameters. 

The data visualization platform adopts MVVM (Model- View - ViewModel) separation framework for the 

front-end and back-end, which ensures the modularity and efficiency of the system. The back-end is 

implemented using the Django Channels framework, which is mainly responsible for processing the data 

received from the edge gateway and facilitating real-time communication with the front-end via WebSocket 

(Fuentes et al., 2024). The front-end is implemented using a JavaScript framework, which receives the data 

pushed from the back-end via WebSocket and updates the display interface in real time. The data is finally 

stored in a MySQL database for post-processing and analysis. The whole system is designed to be efficient 

and reliable, ensuring that users can monitor environmental data in real time and respond in a timely manner. 

 

Fig. 2 - System framework 
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Optimization of fuzzy PID control parameters based on APSO  

PSO is a global optimization algorithm that simulates the foraging behaviour of a flock of birds and 

searches for an optimal solution by updating the positions and velocities of each particle in the population. 

PSO relies on fixed parameter settings (e.g., inertia weights and learning factors), which are adjusted by the 

guidance of the individual optimums and global optimums during the search process (Chen and Chi, 2010). In 

a traditional PSO, the formula for updating the velocity and position of each particle is: 

                        
1 1 2 2

v ( 1) ( ) ( ) ( )
i i i i i

t w v t c r pdest x c r gbest x+ =  +   − +   −                             (1) 

                                                 ( 1) ( ) ( 1)
i i i

x t x t v t+ = + +                                                                    (2) 

where: 

vi is the velocity of particle i; xi is the position of particle i; w is the inertia weight, which is used to control 

the velocity of the particle; c1, c2 is the learning factor; r1, r2 is a random number in the range of [0,1]; pdesti is 

the historical optimal position of particle i; and gbest is the historical optimal position of the whole particle. 

 

However, traditional PSO is prone to fall into local optimal solutions and is sensitive to parameter settings 

(Pan et al., 2020). The APSO algorithm introduces a dynamic adjustment mechanism on this basis, which 

automatically adjusts the inertia weights, learning factors and other parameters according to the current search 

stage, making the algorithm more flexible in balancing the global and local searches, improving the search 

efficiency and robustness of the algorithm, and reducing the probability of falling into a local optimum (Weng 

et al., 2024). In optimizing the parameters of the fuzzy PID controller, APSO can accurately adjust the 

proportional (KP), integral (KI), and differential (KD) coefficients, which makes the controller more adaptable 

and robust in the face of complex, nonlinear, and time-varying systems (Liu, 2016).  

First, the position and velocity of the particle swarm are initialized. The initial position of each particle 

represents a set of PID control parameters. The velocity of the particle determines the step size and direction 

of its search, and the initial velocity is typically set to a random value. The position and velocity of the particle 

are respectively: 

The position and velocity of the particle are given by: 

                                                        ( , , )
i

x KP KI KD=                                                                    (3) 

                                                     ( , , )i KP KI KDv v v v=                                                                    (4) 

where: 𝑖 denotes the number of the particle. 

 

APSO primarily enhances the search ability of particle swarms and optimizes the convergence speed 

by dynamically adjusting inertial weights and learning factors, thereby improving the search efficiency of the 

global optimal solution and reduces the likelihood of falling into the local optimal solution. 

The inertia weight controls the relationship between the particle's current speed and its previous speed, 

and determines the particle's "inertia". The inertia weight is generally reduced during the iteration process so 

that particles can conduct extensive searches in the early iterations and then focus their searches in the later 

iterations to converge to the global optimal solution.  

The calculation formula is as follows: 

                                                 max min

max

max

( )w w
W w T

T

−
= −                                                      (5) 

where: 

wmax is the initial inertia weight; wmin - minimum inertia weight; Tmax - maximum number of iterations;  

T - current number of iterations. 

 

The learning factor controls the speed at which particles approach their personal optimal solution and 

the global optimal solution, determining the dependency of particle search. Usually, the PSO algorithm uses 

two learning factors: one is the individual learning factor and the other is the group learning factor. The 

individual learning factor controls how the particle depends on its own historical experience, that is, how the 

particle adjusts its current speed according to the optimal position it has reached.  

The group learning factor controls how the particle depends on the global experience of the group, that 

is, how the particle adjusts its current speed according to the optimal solution in the group. 
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The specific adjustment formula is: 

                                                
1,max 1,min

1 1,max

( )
( )

c c
c t c t

T

−
= −                                                        (6) 

                                                
2,max 2,min

2 2,max

( )
( )

c c
c t c T

T

−
= −                                                        (7) 

where: 

c1, max, c2, max - maximum value of the learning factor; c1, min, c2, min  - minimum value of the learning factor; 

t -current number of iterations; 𝑇 - maximum number of iterations. 

 

The standard random number in PSO can lead to search restrictions in the particle update process, 

increasing the likelihood of falling into local optimal solution, especially when the solution space is complex 

and the dimension is high. After the introduction of Levy flight, a random term with heavy-tail distribution is 

usually used to replace the original random numbers r1 and r2, so that the particle position update is no longer 

determined only by uniform random numbers, but a "heavy-tail jump" mechanism is introduced. The update 

formula is as follows: 

1 1 2 2v ( 1) ( ) ( ) ( )i i i i it w v t c L pdest x c L gbest x+ =  +   − +   −                               (8) 

where: 

L1 and L2 are random numbers generated based on Levy distribution, following a heavy-tailed 

distribution. These random numbers are usually generated through the distribution formula of Levy flight, which 

is characterized by occasional large jumps to help particles perform global search. 

 

RESULTS 

Model identification 

A PTC heater was installed at the base of the small-scale greenhouse, complemented by fans mounted 

symmetrically at the top. Temperature and humidity sensors were positioned at different locations within the 

greenhouse, and different target temperatures are set to simulate the operational process of the greenhouse 

and infer its transfer function model. In the closed greenhouse model, the ambient temperature is 

approximately 25.4°C, and the target temperature is set to 30.0°C. When the ambient temperature has not 

reached the target value, the heater will continue to operate; if the temperature exceeds the target value, the 

ventilation fan will be activated to cool the environment. Temperature data is recorded once per second over 

a period of 750 seconds. 

To identify the system model, the recorded sample data was imported into the MATLAB/Simulink 

environment to determine the system's transfer function. The System Identification Toolbox in MATLAB, 

employing the nonlinear least squares method, is used for this process. The best fit value is calculated using 

the following formula: after importing the collected temperature data into MATLAB, the System Identification 

Toolbox in Simulink applies the least squares method to analyse and identify the system’s transfer function. 

 

The model's best fit 𝑅2 is calculated using the following equation: 

                                                   

2

2

2

y-y

y-y

mR


=


（ ）
1-

（ ）
                                                     (9) 

where: 

R2 represents the model's best fit, y is the actual recorded temperature data, ym is the predicted 

temperature data based on the identified transfer function model, and y  is the mean of the actual temperature 

data.  

 

This equation evaluates the model's accuracy by calculating the ratio between the sum of the squared 

errors between the predicted values and the actual measurements (numerator) and the total variance of the 

actual measurements from their mean (denominator). If the R2 value approaches 100%, it indicates that the 

identified transfer function model fits the actual data well; conversely, a lower R2 value suggests a poorer fit. 

As shown in Figure 3, the output temperature of the greenhouse system and the fitted curve are presented. 
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The resulting fitted curve is as follows: 

                                                           
304.87

( )
151 1

s
G s e

s

−
=

+
                                                                (10) 

the fit of the curve is: 94.54% 

 
Fig. 3 - Real-time temperature parameters and fitted curves 

 

Fuzzy control strategy and rules 

In accordance with the principles of the fuzzy PID control algorithm, the inputs to the fuzzy PID controller 

are the error and the rate of E and the rate of error Ec. These inputs are crucial for the controller to assess the 

system's deviation from the desired setpoint. The outputs of the fuzzy PID controller correspond to the 

adjustments of the proportional, integral, and derivative gains, represented as ΔKP, ΔKI, and ΔKD. As shown 

in Table 2, the fuzzy domains for E, Ec, KP, KI, KD are [-6, 6], [-6, 6], [-3, 3], [-0.3, 0.3], and [-0.3, 0.3], 

respectively. The fuzzy subsets are PB, PM, PS, ZO, NS, NM, and NB. The membership functions for the 

inputs E and Ec are shown in Figures 4 (a) and (b), while the membership functions for the outputs ΔKP, ΔKI, 

and ΔKD are depicted in Figure 4(c), (d), and (e), respectively. 

 

 
Fig. 4 - Domain and membership function of (a) E, (b) Ec, (c) △KP、(d) △KI and(e) △KD 
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Table 2 

Fuzzy quantization parameters for input and output quantities 

Variable E Ec KP KI KD 

Fuzzy discourse domain [−6,6] [−6,6] [-3,3] [-0.3,0.3] [-0.3,0.3] 

Fuzzy subset PB, PM, PS, ZO, NS, NM, NB 

Membership function Trimf 

 

The fuzzy rule base is composed of several "if-then" rules, where each rule is designed for specific input 

conditions and corresponding outputs. The input variables—E and Ec—are fuzzified into different linguistic 

variables, while the output variables represent adjustments to the PID controller parameters. Based on different 

combinations of error E and error rate Ec, 49 strategies and rules have been developed for adjusting ΔKP, 

ΔKI, and ΔKD in the fuzzy PID control system, as shown in Table 3. The input-output characteristic surfaces 

are presented in Figure 5 (a), (b), and (c). 

 
Fig. 5 - Input and output characteristic surfaces of (a) △KP, (b) △KI, (c) △KD 

 

Table 3 

Fuzzy control rules 

E 
Ec 

NB NM NS ZO PS PM PB 

NB PB, NB, NS PB, NB, NS PM, NM, NB PM, NM, NB PS, NS, NB ZO, ZO, NM ZO, ZO, PS 

NM PB, NB, NS PB, NB, NS PM, NM, NB PS, NS, NM PS, NS, NM ZO, ZO, NS NS, ZO, ZO 

NS PM, NB, ZO PM, NM, NS PM, NS, NM PS, NS, NM ZO, ZO, NS NS, PS, NS NS, PS, NS 

ZO PM, NM, ZO PM, NM, NS PS, NS, NS ZO, ZO, NS NS, PS, NS NM, PM, NS NM, PM, ZO 

PS PS, NM, ZO PS, NS, ZO ZO, ZO, ZO NS, PS, ZO NS, PS, ZO NM, PM, ZO NM, PB, ZO 

PM PS, ZO, PB ZO, ZO, NS NS, PS, PS NM, PS, PS NM, PM, PS NM, PB, PS NB, PB, PB 

PB ZO, ZO, PB ZO, ZO, PM NM, PS, PM NM, PM, PM NM, PM, PS NB, PB, PS NB, PB, PB 

 

Simulation and experimental results 

The structure of the APSO fuzzy PID controller is shown in Figure 6. The APSO algorithm is executed 

to optimize the three parameters of the fuzzy PID controller, and the resulting optimization curve is presented 

in Figure 8 (a) - (e).  

The optimization process illustrates the trend of each parameter across multiple iterations. As the 

number of iterations increases, the parameters gradually stabilize, indicating that the APSO algorithm 

effectively adjusts the particle swarm's search strategy and quickly finds the optimal control parameters. The 

fitness variation curve is shown in Figure 8 (f). From the curve, it can be observed that the APSO algorithm 

performs a global search in the initial stage, identifies a better solution within a short time, and then gradually 

converges to the optimal solution.  

During the system simulation, the initial temperature of the greenhouse was set to 30°C, and the 

simulation time was set to 750 seconds. The performance of APSO fuzzy PID control, fuzzy PID control, and 

traditional PID control were compared. As shown in Figure 7, during the dynamic response phase, the APSO-

optimized fuzzy PID control method significantly reduces the oscillation amplitude and frequency compared to 

the PID and fuzzy PID methods. This effectively improves the dynamic characteristics of the system and 

ensures that the response curve meets the control requirements.  
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By analysing the fluctuation curves of the simulation experiments using a MATLAB oscilloscope, the 

time domain performance metrics can be derived and the results are shown in Table 4. Compared to fuzzy 

PID and PID, APSO fuzzy PID reduces overshoot by 22.8% and 72.1%, respectively; the adjustment time is 

reduced by 9% and 20%, respectively; and the system's stability is significantly improved. By observing the 

oscilloscope waveform, it is evident that the optimized controller can quickly identify and effectively suppress 

the influence of disturbances, allowing the system output to return to a stable state in a short time. This 

demonstrates that the fuzzy PID controller optimized by APSO has strong anti-disturbance capability, enabling 

the system to maintain high control accuracy and robustness under interference. 

 

 
Fig. 6 - System controller 

 

 
Fig. 7 - Simulation result 
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Fig. 8 - (f) Adaptation changes curves; parameter optimization results (a): KP, (b): KI, (c): KD, (d): Ke, (e): Kec. 

Table 4  

Analysis of simulation results 

Performances 
Methodologies 

APSO Fuzzy PID Fuzzy PID PID 

Rising time tr/s 23.8 27.7 20.6 

Overshootσ/% 3.65% 4.73% 13.07% 

Adjustment time ts/s 110.1 121 137.5 

 

The structural layout of the greenhouse is depicted in Figure 9. Three air temperature and humidity 

sensors were placed around the greenhouse to monitor the overall temperature, while a soil parameter sensor 

was embedded in the soil to monitor soil conditions. Two fans were symmetrically installed to facilitate air 

circulation, and the heater and cooler were installed in the upper and lower parts of the greenhouse, 

respectively, to control the temperature. 

 

 
Fig. 9 - Greenhouse structure 

 

In this experiment, the effectiveness of the greenhouse control system was tested at set temperatures 

of 24°C, 28°C, and 30°C, as shown in Figure 10 (a), (b), and (c). Throughout the experiment, the internal 

temperature of the greenhouse was continuously adjusted and monitored in real time using a precise 

environmental control system. The results showed that the temperature control system in the greenhouse 

responded quickly and remained near the set point, with fluctuations within 0.3°C. This demonstrates the 

system's strong temperature regulation capability, effectively maintaining the required temperature range and 

ensuring the stability of the greenhouse environment. In terms of humidity control, the greenhouse humidity 

was regulated using direct control methods, as ambient humidity decreases slowly. The experimental results 

are shown in Figure 10 (d). 
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Fig. 10 - Temperature control curves at (a) 24°C, (b) 28°C, (c) 30°C, (d) 55% Humidity 

 

The performance tests of the system at outside temperatures of 22°C and 17°C are shown in Figure 11 

(a) and (b), respectively. The test results revealed that as the ambient temperature decreased, the system’s 

response time extended accordingly; however, this did not affect the overall control effectiveness. To evaluate 

the system’s performance under varying humidity conditions, tests were conducted at greenhouse humidity 

levels of 30%, 40%, 50%, and 60%, with the results displayed in Figure 11 (c), (d), (e), and (f). The results 

showed that the different humidity levels had almost no effect on the system's responsiveness or its stabilizing 

effect. 

 
Fig. 11- Control effect at different ambient temperatures: (a) 22°C, (b) 17°C; control effect  

at different humidity: (c) 30%, (d) 40%, (e) 50%, (f) 60% 
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The configured data visualization platform, shown in Figure 12, clearly displays various environmental 

parameters within the greenhouse, including temperature, humidity, soil salinity, and pH. The platform is also 

equipped with an anomaly alert function, which automatically triggers an alarm when any environmental 

parameter exceeds the preset safety range, prompting the user to take timely action. Figure 13 shows the 

developed MySQL database, which allows different data to be stored for later analysis and processing. 

 

 
Fig. 12 - Data presentation platform 

 

 
Fig. 13 - MySQL database 

 
 

 

CONCLUSIONS 

This study focused on the design and implementation of a greenhouse environmental control system, 

with an in-depth investigation of a fuzzy control-based temperature regulation strategy and the integration of 

an intelligent display platform for environmental monitoring. Through experimental validation, the greenhouse 

environment achieved stable and precise control under different temperature settings, confirming the 

effectiveness of the fuzzy control method in managing complex nonlinear systems. In addition, the constructed 

big data display platform successfully collected and visualized greenhouse parameters such as temperature 

and humidity in real time, providing managers with intuitive and detailed environmental information. Moreover, 

the platform included an anomaly alert feature that could promptly identify and notify users of potential 

environmental risks, thereby enhancing the safety and automation of greenhouse management.  

Future work will focus on optimizing the control algorithms for broader deployment, integrating more 

diverse environmental sensors, and enhancing the robustness of the platform under varying network conditions. 

This study not only validated the efficacy of fuzzy control in greenhouse environmental management but also 

demonstrated the broad application potential of intelligent display platforms in agricultural management.  
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The system ensures the stability of the crop growth environment while simplifying management 

processes and reducing the need for manual intervention, providing strong support for the intelligent and 

precise development of modern agriculture.  
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